线性回归相关系数公式

发布日期:2023-11-02 18:38:30 95 阅读 0 点赞

  (一)线性回归相关系数公式

  将反映两变量间线性相关关系的统计指标称为相关系数;将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母r表示。

  样本的简单相关系数一般用r表示,计算公式为:其中n为样本量,Xi和X分别为两个变量的观测值和均值。r描述的是两个变量间线性相关强弱的程度。r的取值在-1与+1之间,若r>0,表明两个变量是正相关,即一个变量的值越大,另一个变量的值也会越大;若r

  (二)相关系数越大

  1、相关系数越大,说明两个变量之间的关系就越强。当相关系数为1时,两个变量其实就是一次函数关系。

  2、相关系数介于0与1之间,用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。

  3、相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母r表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。

  (三)相关系数矩阵

  相关矩阵也叫相关系数矩阵,其是由矩阵各列间的相关系数构成的。也就是说,相关矩阵第i行第j列的元素是原矩阵第i列和第j列的相关系数。

  性质:相关矩阵的对角元素是1。相关矩阵是对称矩阵。

  一般来说权重系数相加之和等于回1,但这里可以不用等答于1的,因为y1到y4都属于不同的类型,要反映到GDP上不必要权重之和为1。

  (四)相关系数公式

  1、标准差公式:D(X)=E(X2)-E2(X);协方差公式:COV(X,Y)=E([X-E(X)][Y-E(Y)]);相关系数公式:协方差/[根号D(X)*根号D(Y)]。

  2、相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母r表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。

  3、相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。

  4、需要说明的是,皮尔逊相关系数并不是唯一的相关系数,但是最常见的相关系数,以下解释都是针对皮尔逊相关系数。

  5、依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。

点击阅读全文